该研究的创新点之一是解决深度神经网络训练数据问题,利用风格迁移网络实现仿真数据与实验数据的无监督自由转换,将丰富的带标注仿真数据转换到实验域,即生成了大量带标注的“实验数据”用于后续深度神经网络训练。
日前,天津大学精密仪器与光电子工程学院李娇副教授和高峰教授团队,利用定量光声深度学习的方法,实现了活体深层组织的光学功能“真实透视”成像,这在世界尚属首次。这将为获取活体组织生理病理相关的血氧特性图像提供高空间分辨定量成像方法,可用于肿瘤早期筛查、良恶性诊断以及抗癌药物疗效在体监测与量化评估。该论文近日发表在国际光学期刊《Optica》上。
深度学习方法进入医学影像学
定量光声层析成像是一种新兴的无创生物医学成像技术,可结合传统光学成像的功能性以及传统超声成像的高清晰度等优势,直接获取深层组织光学吸收系数图像,因此受到国内外研究机构和医疗企业的广泛关注。
但目前的定量光声层析成像方法需要庞大的计算资源和时间消耗,且存在稳定性差、先验信息依赖性强及误差大等问题。
近年来,深度学习方法进入医学影像学领域。但深度学习想要实现既定功能一般需要两个过程:训练过程以及实际识别过程。
“如果想要让深度神经网络充分发挥其学习能力,必须有大量带有标注的真实数据用于其训练过程。”论文第一作者李娇表示,然而,在许多生物医学成像中很难获得深层组织特别是活体组织的真实值(如光学吸收系数),因此很难构建大量带有标注的真实实验数据集用于深度神经网络的训练,造成深度学习方法在许多生物医学成像领域难以应用推广。
针对上述难题,李娇和高峰团队首次提出了无需标注真实数据的定量光声层析成像深度学习方法,实现了深层组织吸收系数的准确重建。
解决深度学习方法的泛化性难题
该研究的创新点之一是解决了深度神经网络训练数据问题,利用风格迁移网络(SEED-Net)实现仿真数据与实验数据的无监督自由转换,将丰富的带标注仿真数据转换到实验域,即生成了大量带标注的“实验数据”用于后续深度神经网络训练。
“我们提出的SEED-Net不仅可以解决定量光声层析成像方面缺乏真实数据集的问题,在其他生物医学成像领域例如光学、荧光层析成像中同样受限于缺乏足够的带标注的真实实验数据,也可使用该网络通过丰富的仿真数据生成‘实验数据’,进一步发展适用于实际应用的生物医学成像深度学习方法。”李娇说。
该方法具有普遍适用性,适合在不同光声成像系统、其他光学成像技术和整个生物医学成像领域推广及应用。
“这也从一定程度上解决了深度学习方法的泛化性难题。”论文的通讯作者之一、天津大学副教授孙彪介绍说。
该研究的另一创新点是结合实际光声数理模型设计了一种双通道神经网络,分别考虑组织光强分布和光学吸收系数对初始声压图像的影响。
“目前光声成像领域中的深度学习方法,通常是将其他领域发展好的网络模型直接用于解决光声成像中的问题。如何改造其神经网络使它们更加贴近光声或其他成像技术的数理模型将成为深度学习方法在生物医学成像领域应用的重要问题之一。”李娇说。
利用该深度学习方法,团队成功重建出高空间分辨率的深层组织光学吸收系数定量分布图像。
这是首次应用定量光声层析成像深度学习方法实现对活体深层组织光学吸收系数的“真实透视”成像。无标注真实数据情况下深度神经网络的成功应用也开拓了深度学习方法在生物医学成像方向的发展空间。
标签:最近更新
- 快看:“天灾加人祸”,特斯拉的好日子到头了?2023-01-09
- 【全球热闻】支付宝2023年“集五福”来了 网友:两块钱的大项目2023-01-09
- 全球今头条!马斯克承诺成空谈!推特被裁员工仅获1个月工资补偿2023-01-09
- 微软Xbox老大斯宾塞盛赞索尼:无障碍手柄是对PS生态很好的补充2023-01-09
- 每日资讯:暴雪网易复合几乎不可能:不会降低标准 正和新代理谈的火热2023-01-09
- 苹果砍单“链条”受过 “果链”上市公司另寻出路2023-01-09
- 天天热资讯!紫辉创投郑刚再呛罗永浩:多次退出锤子科技股东群,用新公司股权要挟投资人放弃基本权利2023-01-07
- 投资人炮轰罗永浩“势利眼”,曾参与锤子科技两轮融资,称其是中国乔布斯|全球通讯2023-01-07
- 天天观点:罗永浩发文回应投资人郑刚2023-01-07
- 罗永浩回应郑刚炮轰:锤子每年都开股东会,新公司已给老股东股权补偿2023-01-07
- 蚂蚁集团股东上层结构调整、马云不再为实控人,继续强化与阿里的隔离_全球新要闻2023-01-07
- 二叠纪大灭绝期间紫外线辐射增加?化石花粉粒中“防晒霜”添证据|全球快资讯2023-01-07
- 湖北西部秭归盆地首次发现侏罗纪中期恐龙足迹化石-环球讯息2023-01-07
- 观察:蚂蚁集团大动作!马云退出实控人位置,股东投票权进一步分散,拟引入第五名独董2023-01-07
- 罗永浩回应投资人“炮轰”:郑刚对我的评论毫无事实基础-环球快报2023-01-07
- 网传马云现身曼谷:吃路边摊看泰拳比赛 还上阵打了一通2023-01-07
- 投资人郑刚炮轰罗永浩 全球快看2023-01-07
- 全球实时:蚂蚁强化与阿里隔离 马云股份表决权变了2023-01-07
- 刚刚,蚂蚁集团发布重要公告!_环球快播2023-01-07
- 锤子手机投资人、紫辉创投创始人郑刚深夜炮轰罗永浩:不懂感恩2023-01-07
- 显卡出货量现20年最大跌幅!华强北背包客做副业等回暖,产线已在加大招工2023-01-07
- 蚂蚁集团完善公司治理 不再存在任何股东单一或共同控制集团的情形 环球观天下2023-01-07
- 新冠病毒变异株会如何进化?多位国内病毒学家解读2023-01-07
- 新一批版号获批传递利好,中国游戏市场将迎新一波龙争虎斗2023-01-07
- TikTok CEO周受资将会见欧盟反垄断主管 讨论个人数据保护_最新资讯2023-01-07
- 暴雪四面楚歌,腾讯推魔兽高仿游戏《塔瑞斯世界》,加入中国玩家争夺战 当前速读2023-01-07
- 【全球快播报】AI内容创作火热 深层次应用场景尚待探索2023-01-07
- 为混乱治理甩锅? 马斯克:雇错律师团队是推特员工的错_焦点要闻2023-01-07
- 每日信息:国泰基金王阳:三大市场中国增速最快2023-01-07
- 2022年12月全球制造业PMI为48.6% 连续7个月环比下降_环球热讯2023-01-07