受人脑工作机理、计算方式等启发,近年来,科学家们试图借鉴人脑的物理结构和工作特点,让计算机完成特定的计算任务。
不过,受制于传统计算机架构瓶颈的限制,在目前的信息计算处理技术中,数据存储和计算需要由存储芯片和中央处理器分别来完成。数据在二者之间“搬运”处理,耗时长、功耗大,还随时有可能“交通堵塞”。
计算机能不能像人脑一样将存储和计算合二为一,从而高速处理信息?
近日,清华大学微电子所、未来芯片技术高精尖创新中心研究团队,与合作者共同研发出一款基于多个忆阻器阵列的存算一体系统,能够高效地处理卷积神经网络,能效比图形处理器芯片高两个数量级,有望大幅提升计算设备的算力,相关成果近日发表于《自然》杂志。
存算一体小功耗实现大算力
随着人工智能应用对计算和存储需求的不断提升,集成电路芯片技术面临诸多新挑战。一方面,摩尔定律“渐行渐远”,通过集成电路工艺微缩的方式获得算力提升越来越难;另一方面,传统架构中,计算与存储在不同电路单元中完成,大量数据搬运会造成功耗增加和额外延迟。
“如果我们把居家生活比作存储,把上班比作计算,每天上班路上会消耗时间、能量,遇到早晚高峰,通勤时间会更长。这个场景和信息处理有很多相似之处,如果存储和计算合二为一,就相当于居家办公一样,能减少通勤时间也能节省体力消耗,可以用更小的功耗实现更大的算力,减少数据传输的延迟。”该团队的研究成员之一、清华大学未来芯片技术高精尖创新中心教授吴华强说。
所以,如何实现计算存储一体化、突破算力瓶颈,成为近年来国内外的科研热点。
忆阻器,是继电阻、电容、电感之后的第四种电路基本元件,这种元件的阻值是由流经它的电荷确定的。即使电流中断,忆阻器的电阻仍然会停留在之前的数值,这意味着,就算是断电了,这一部分的数据还可以保留。再加上忆阻器的尺寸小,可以大规模集成,功耗低,又适合做模拟计算,所以研究团队认为,可以用忆阻器尝试做存算一体、低能耗类脑计算。
但现实远比理想骨感。忆阻器器件间波动、器件电导卡滞、电导状态漂移等,会导致计算准确率降低,制备具有高一致性、高可靠性的多值忆阻器阵列很困难。
忆阻器性能好坏,很大程度上取决于材料的选择与组合。在选择材料时,团队主要考虑所选材料的物理参数是否易调控、未来是否适合产业化。
出于这些考量,团队在忆阻器常用的二氧化铪材料上,添加了一层界面调控层。这个界面调控层是一种金属氧化层材料,它的不同成分占比可以根据不同工艺精确控制。通过这种方法,可以比较有效地控制忆阻器中二氧化铪部分的微观变化,以及内部的温度和电场。
“界面调控层就像一层口罩,不仅能隔绝病毒、灰尘,还能保暖、保湿。这种设计方式使器件具有非常优异的电学特性,而且可以在工厂里大规模生产。”该研究团队的高滨副教授说。
或许会率先应用在人工智能领域
想让忆阻器存算一体系统解决实际问题,需要在处理大量的计算任务中,克服器件、系统、算法等方面的瓶颈,卷积神经网络是很好的“试金石”。
卷积神经网络是一种重要的深度学习模型,借鉴了人脑处理视觉信息的方式,从算法角度,通过卷积、池化等操作,高效提取图像、视频等特征信息,在多种计算机视觉任务处理中取得了很好的效果。在传统计算架构中,受限于存储和计算分离的设计,实现卷积神经网络模型会出现功耗高、延时长,无法满足众多生活场景中电池容量、实时操作等要求。
团队认为,存算一体的忆阻器,可以用来实现卷积神经网络等深度学习模型的高效处理,满足日常应用对算力、功耗的要求。他们还提出了空间并行的机制,将相同卷积核编程到多组忆阻器阵列中,各组忆阻器阵列可并行处理不同的卷积输入块。他们集成了8个忆阻器处理单元,每个单元阵列包含2048个忆阻器件,用以提高并行计算的效率。该系统高效运行了卷积神经网络算法,成功验证了图像识别功能,证明了存算一体架构全硬件实现的可行性。
吴华强说,忆阻器存算一体系统,或许会率先应用在人工智能领域,如果用基于忆阻器的存算一体芯片生产手机,那么芯片的算力几乎可以让手机掌握“读心术”,“它能听懂你的声音,知道你喜欢哪些照片,会跟你越来越亲近,变得越来越智能。”(金凤)
标签:最近更新
- 最新:宁夏首条高铁5G网络全线开通2023-01-09
- 5项数字化转型国家标准正式立项2023-01-09
- 漯河联通“六抓六促”推广党建负责人工作法2023-01-09
- 【速看料】泰安移动开展“四个一”抓实抓牢节前廉洁教育2023-01-09
- 我国大数据产业规模达1.3万亿元复合增长率超30%2023-01-09
- 宿州移动警企联动“重拳打猫”再添战果2023-01-09
- 焦点热议:中国联通故障中心平台及网络智能运维机器人系统获“优秀级”认证2023-01-09
- 浙江联通实现省内重点城市“一市一池”全覆盖|焦点快看2023-01-09
- 苹果服软!iPhone 15曝光:全系标配USB-C、灵动岛 Pro版还有钛合金2023-01-09
- 每日观察!未来要取代iPhone!苹果AR/VR头戴设备将春季发布:原型机已发放2023-01-09
- 快看:“天灾加人祸”,特斯拉的好日子到头了?2023-01-09
- 【全球热闻】支付宝2023年“集五福”来了 网友:两块钱的大项目2023-01-09
- 全球今头条!马斯克承诺成空谈!推特被裁员工仅获1个月工资补偿2023-01-09
- 微软Xbox老大斯宾塞盛赞索尼:无障碍手柄是对PS生态很好的补充2023-01-09
- 每日资讯:暴雪网易复合几乎不可能:不会降低标准 正和新代理谈的火热2023-01-09
- 苹果砍单“链条”受过 “果链”上市公司另寻出路2023-01-09
- 天天热资讯!紫辉创投郑刚再呛罗永浩:多次退出锤子科技股东群,用新公司股权要挟投资人放弃基本权利2023-01-07
- 投资人炮轰罗永浩“势利眼”,曾参与锤子科技两轮融资,称其是中国乔布斯|全球通讯2023-01-07
- 天天观点:罗永浩发文回应投资人郑刚2023-01-07
- 罗永浩回应郑刚炮轰:锤子每年都开股东会,新公司已给老股东股权补偿2023-01-07
- 蚂蚁集团股东上层结构调整、马云不再为实控人,继续强化与阿里的隔离_全球新要闻2023-01-07
- 二叠纪大灭绝期间紫外线辐射增加?化石花粉粒中“防晒霜”添证据|全球快资讯2023-01-07
- 湖北西部秭归盆地首次发现侏罗纪中期恐龙足迹化石-环球讯息2023-01-07
- 观察:蚂蚁集团大动作!马云退出实控人位置,股东投票权进一步分散,拟引入第五名独董2023-01-07
- 罗永浩回应投资人“炮轰”:郑刚对我的评论毫无事实基础-环球快报2023-01-07
- 网传马云现身曼谷:吃路边摊看泰拳比赛 还上阵打了一通2023-01-07
- 投资人郑刚炮轰罗永浩 全球快看2023-01-07
- 全球实时:蚂蚁强化与阿里隔离 马云股份表决权变了2023-01-07
- 刚刚,蚂蚁集团发布重要公告!_环球快播2023-01-07
- 锤子手机投资人、紫辉创投创始人郑刚深夜炮轰罗永浩:不懂感恩2023-01-07